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Abstract

The innovative intelligent fuzzy weighted input estimation method which efficiently and robustly estimates the unknown time-varying
heat flux in real-time is presented in this paper. The algorithm includes the Kalman Filter (KF) and the recursive least square estimator
(RLSE), which is weighted by the fuzzy weighting factor proposed based on the fuzzy logic inference system. To directly synthesize the
Kalman filter with the estimator, this work presents an efficient robust forgetting zone, which is capable of providing a reasonable com-
promise between the tracking capability and the flexibility against noises. The capability of this inverse method are demonstrated in one-
and two-dimensional time-varying estimation cases and the proposed algorithm is compared by alternating between the constant and
adaptive weighting factors. The results show that this method has the properties of faster convergence in the initial response, better target
tracking capability and more effective noise reduction.
� 2008 Elsevier Ltd. All rights reserved.
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1. Introduction

Utilizing the inverse techniques to estimate the thermal
unknowns, such as boundary conditions, heat flux and
thermal properties, has become a conventional means of
resolving heat transfer problems in recent decades. When
solving the inverse heat conduction problem, the inappro-
priate choice of the tuning parameter will cause an issue.
The system is unstable, and extraordinarily sensitive to
the measurement error. Besides, the thermal diffusion phe-
nomenon contains the damping and lag effects. Various
techniques have been developed to handle the inverse prob-
lems of heat conduction. Stolz [1], in 1957, provided one of
the earliest numerical inverse solution algorithms for a
quenching test. The inverse method is unstable and sensi-
0017-9310/$ - see front matter � 2008 Elsevier Ltd. All rights reserved.
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tive to the measurement errors due to the small time inter-
val. Therefore, the solutions for IHCP should be able to
reduce instability and sensitivity and provide the desired
accuracy. Another solution for IHCP is the regularization
method [2]. The regularization method was divided into
the whole domain regularization algorithm and the conju-
gate gradient iterative algorithm. The whole domain regu-
larization algorithm has been used by Miller in 1970 [3],
Alifanov in 1974 [4], and Scott and Beck in 1989 [2]. The
advantage of the algorithm is its simplicity in formulation.
However, when the inverse algorithm is carried out over a
long period of time, the number of dimensions of matrices
and the computation load will increase gradually. The con-
jugate gradient iterative algorithm has been used by Alifa-
nov and Millhailov in 1978 [5], Alifanov and Artyukhin in
1975 [6], and Mikhailov in 1983 [7]. The gradient iterative
algorithm method has been proposed since the calculation
procedure to solve the IHCP specified by the differential
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Nomenclature

B sensitivity matrix
[B] gradient matrix
[C] capacitance matrix
Cp specific heat
Cc chrome specific heat
Cs steel specific heat
[D] matrix of conductivity values
{F} thermal load vector
{ff} coefficient vector
H measurement matrix
I identity matrix
J functional
Je element functional
k time (discretized)
kc chrome thermal conductivity
ks steel thermal conductivity
K Kalman gain
Kb steady-state correction gain
l element length
M sensitivity matrix
[M] global conductance matrix
N total number of nodes
[N] shape function matrix
P filter’s error covariance matrix
Pb error covariance matrix
Q process noise covariance

q(t) heat flux
R measurement noise covariance
Ro radius of outer wall
Ri radius of inner wall
s innovation covariance
t time
T temperature
T0 initial temperature
v measurement noise vector
r radial coordinate
Z(k) observation vector
c forgetting factor
a thermal diffusivity
ac thermal diffusivity of the chrome
as thermal diffusivity of the steel
C input matrix
r standard deviation
d Dirac delta function
q density
qc density of the chrome
qs density of the steel
U state transition matrix
W coefficient matrix
X coefficient matrix
Dt sampling time interval
x process noise vector
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equations is interpreted as an optimal control theory. It has
been utilized and investigated extensively by Huang and
Ozisik [8–11], and Li and Yan [12,13]. The above-men-
tioned algorithms are based on either the batch or off-line
form, which results in computational inefficiency.

In the industrial applications, some parameters of this
problem must be determined on-line rather than in batch
form. Therefore, Tuan et al. [14] successfully presented
an input estimation approach which is recursive and on-
line to solve the IHCPs. This method includes the Kalman
filter and the recursive least square estimator. The heat
conduction equation is transformed into the system state
equation. The Kalman filter is used to generate the residual
innovation sequence, and the real-time recursive least
square algorithm is using this residual sequence to estimate
the unknown time-varying inputs. In order to reduce the
recollection capacity, the estimation data at the former
time step and the measurement data in the current time
step are applied to the estimation. In this work, the ‘‘on-
line” form inverse methodology based on the concept of
Kalman filtering is developed. The proposed method is a
real-time recursive input estimation algorithm to estimate
the unknown input. Therefore, the ‘‘off-line” technique of
the batch form method to estimate the unknown time-vary-
ing input has been replaced by the proposed method. This
technique is fairly adaptable in solving the IHCPs in real-
time [15–17].

The weighting function is applied into the time-varying
input estimation of the RLSE. The value of c(k) is a con-
stant and heuristically chosen between 0 and 1. It performs
as a tunable parameter which not only controls the band-
width and magnitude of the RLSE gain, but also influences
the lag in the time domain. A small value of c(k), although
provides a good tracking ability, is influenced by the fluctu-
ations due to uncertain system noise. On the contrary, a
large value of c(k) is less sensitive to disturbances, but pro-
vides the relatively lower tracking ability to estimate the
time-varying inputs. Therefore, the optimal selection of
c(k) must be a trade-off between the required tracking
capability and the acceptable noise sensitivity [18].

In the conventional estimation method, the optimal
weighting factor is obtained only through complicated esti-
mation process analysis [18]. The innovation sequences
imply the effect of the unknown input. For instance, when
there is no input yet, the bias-free innovation sequence
demonstrates this situation. On the other hand, when an
unknown input acts on the boundary, the bias innovation
sequence from the Kalman filter will show the existence
and quantity of this unknown input [19]. The bias innova-
tion sequence is observable and analogous to the unknown



Fig. 1. System geometry [17].
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input when the error covariance of estimation is sufficiently
small. In the meantime, by assuming the weighting func-
tion to be a function of innovation, an adaptive estimation
process can be obtained. Although the input estimates con-
verge slowly in the initial time when the adaptive weighting
function is used in the RLSE, the estimator has good over-
all tracking performance when the unknown input is time-
varying regardless of the influence of the measurement
noise interference [20].

In this paper, an intelligent fuzzy weighting function is
used to replace the weighting factor, c(k), of the RLSE.
Improving the weighting efficiency of the RLSE is essential,
because the unknown input is time-varying and changes
continuously. The adaptive weighting function takes any
input variation into account. Therefore, the inverse method
with quick target tracking and effective noise reduction is
developed. The heat conduction equation is transferred to
the state equation. The unknown input heat flux is assumed
as the unknown parameter. The operation of input estima-
tion method is first to measure the outer wall temperature
state. In the meantime, the Kalman Filter is used to gener-
ate the residual innovation sequence. The residual innova-
tion sequence connotes the biased or systematic error due
to the unknown time-varying input items, variance or ran-
dom error form the measurement. The estimator then esti-
mates the histories of unknown heat flux by applying the
residual innovation sequence to the intelligent fuzzy
weighted recursive least square algorithm. In other word,
the unknown input parameter in any form of the unknown
input item can be estimated.This inverse method presents
an efficient and robust estimation procedure to any
unknown input situation. The presented work addresses
an intelligent fuzzy weighted estimator based on the fuzzy
logic system. The robustness and efficiency of this method
will be demonstrated through three simulation case studies.
The results are also compared with the ones using other
algorithms. The reliability, adaptivity, and robustness of
this method can therefore be verified.

2. Problem formulation

Assuming that there is a hollow composite pipe, the
radius of the inner and outer walls are Ri and Ro, respec-
tively. The radius of the interface between the two metal
layers is RL. dc(�RL � Ri) is the thickness of the chrome
layer. The temperature measurement, z(t), is measured by
the thermocouple at x = Ro. Fig. 1 shows the geometry
of the system structure.

The restrictions are as follows [21]:

(1) The temperature distribution in the axial direction is
neglected because it is relatively small in comparison
to that in the radial direction.

(2) The temperature distribution is axis-symmetrical in
the plane normal to the pipe axis. It means that the
heat input is also axis-symmetrical, and the gravity
in the barrel wall and chrome thickness variation
along with other effects that would cause dissymme-
try are neglecting.

(3) The thermal expansion of the pipe is not considered
in the heat transfer process.

(4) The densities, specific heats, and thermal conductivi-
ties of steel and chrome layers are assumed as
constants.

(5) Thermally perfect conjunction is assumed at the
chrome–steel interface (i.e., the temperature distribu-
tion and radial conductive heat flux are both
continuous).

(6) The latent heat effects due to the phase change of steel
from martensite to austenite are neglected.

(7) The mathematical formulation of the one-dimen-
sional transient heat conduction problem can be gen-
eralized as follows [17]:
� �

o

2T ðr; tÞ
or2

þ 1

r
oT ðr; tÞ

or
¼ 1

ac

oT ðr; tÞ
ot

in Ri 6 r 6 RL;

ð1Þ
o2T ðr; tÞ

or2
þ 1

r
oT ðr; tÞ

or
¼ 1

as

� �
oT ðr; tÞ

ot
in RL 6 r 6 Ro;

ð2Þ
T ðr;0Þ ¼ T 0 for t ¼ 0 in Ri 6 r 6 Ro; ð3Þ

� kc

oT
or
¼ qðtÞ in r ¼ Ri; ð4Þ

� ks

oT
or
¼ hðT � T1Þ in r ¼ Ro; ð5Þ

kc

oT
or

� �
c

¼ ks

oT
or

� �
s

in r ¼ RL; ð6Þ

Zðr; tÞ ¼ T ðr; tÞ þ vðtÞ measured temperature; ð7Þ
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T is the temperature distribution as a function of r and t. t

is the elapsing time from the initiation. The constants
ac � kc=ðqc � cpc

Þ and as � ks=ðqs � cps
Þ are the thermal diffu-

sivities of the chrome and steel, respectively. kc, qc, and cpc

are the thermal conductivity, density, and specific heat of
chrome, respectively; ks, qs, and cps

are the corresponding
properties of steel.

T0 is the uniform initial temperature. q(t) is the
unknown heat flux input to be estimated. Z(t) is the
noise-corrupted measurement. v(t) is the measurement
noise assumed as Gaussian white noise with zero mean. h

is the convection coefficient when the heat transfers
between the barrel wall and the surrounding atmosphere.
T1 is the temperature on the outer wall.

In the chrome layer where Ri 6 r 6 RL, the calculus of
variations provides an alternative method for formulating
the governing equation (1) and boundary conditions (3,
4, and 6). Variation calculus illustrates the minimization
of the functional Jc [22]:

J c ¼
1

2

Z Z Z
V

rkc �
oT
or

� �2

þ 2rqcCc �
oT
ot

� �
� T

" #
dV

þ
Z

S
qT dS: ð8Þ

The element equation for the temperature is

T e ¼ Ne
i T i þ N e

jT j ¼ ½Ne�fTg;

where Ti and Tj are the node temperatures to be
determined:

½Ne� ¼ N e
i N e

j

� �
¼ Rj�r

Rj�Ri

r�Ri
Rj�Ri

h i
:

The temperature gradient matrix, {ge}, is given by

fgeg ¼ oT e

or
¼ oNe

i
or

oNe
j

or

h i
fT g

¼ � 1

Rj � Ri
T i þ

1

Rj � Ri
T j

¼ � 1
Rj�Ri

1
Rj�Ri

h i T i

T j

� �
¼ ½Be�fTg;

where [N] is the shape function matrix, and [B] is obtained
by differentiating [N] with respect to r.

Eq. (8) must be minimized with respect to the set of
nodal value {T}

oJ c

ofTg ¼
o

ofTg
XE

e¼1

J e
c ¼

XE

e¼1

oJ e
c

ofTg ¼ 0:

The minimization process produces the following equation:

½C�c
ofTg

ot
þ ½M �cfT g þ fF gc ¼ 0:

The [C]c matrix is the global capacitance matrix. [M]c is the
global conductance matrix. {F}c is the thermal load vector.
The element of [C]c, [M]c, and {F}c are summarized as
follows:
½De�c ¼ ½rke
c�; ð9Þ

½Ce�c ¼
Z

V
rqcCc½N e�fTg½Ne� ofTg

ot
dV

¼ 2pqcCc

60l2

ð2R5
j � 20R2

j R3
i þ 30RjR4

i � 12R5
i Þ

ð3R5
j � 5R4

j Ri þ 5RjR4
i � 3R5

i Þ

"
ð3R5

j � 5R4
j Ri þ 5RjR4

i � 3R5
i Þ

ð12R5
j � 30R4

j Ri þ 20R3
j R2

i � 2R5
i Þ

#
; ð10Þ

½Me�c ¼
Z

V
½Be�T½De�c½Be�dV

¼ 2pkc

l2

Z Rj

Ri

�1

1

� 	
�1 1½ �r2 dr

¼
2pkcðR3

j � R3
i Þ

3ðRj � RiÞ2
1 �1

�1 1

� 	
; ð11Þ

ff egc ¼
Z

S1

q½N e�T dS ¼ fff gq ¼ 2pRiq
1

0

� 	
; ð12Þ

Ri and Rj are the single elements of the left node and right
node. The length between the single elements, l = Rj � Ri.
[D] is the matrix composed of the conductivity values. [ff]
is the coefficient matrix.

In the steel layer, The functional formula that is equiv-
alent to Eq. (2) and its boundary conditions, Eqs. (3), (5)
and (6) is Js:

J s ¼
1

2

Z Z Z
V

rks �
oT
or

� �2

þ 2rqsCs �
oT
ot

� �
� T

" #
dV

þ
Z

S1

1

2
hðT � T1Þ2 dS; ð13Þ

J ¼
XE

e¼1

Z
V e

1

2
fgegT½De�fgegdV

þ
Z

V
rðqsCsÞe

oT e

ot

� �
T e dV þ

Z
Se

1

1

2
hðT e � T e

1Þ
2 dS;

ð14Þ

where E is the number of elements, e is the single element.
Therefore

J s ¼ J 1
s þ J 2

s þ � � � þ J E
s ¼

XE

e¼1

J e
s :

A single element can be extracted as the following:

J e
s ¼

Z
V e

1

2
fT gTfBegT½De�fBegfTgdV

þ
Z

V e
rqsCs½Ne�fTg½Ne� ofT g

ot
dV

þ
Z

Se
1

h
2
fTgTfN egTfN egfTgdS �

Z
Se

1

hT1fNegfT gdS

þ
Z

Se
1

h
2

hT 2
1 dS ð15Þ
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In the steel layer, Eq. (15) needs to be minimized with re-
spect to the set of nodal values {T}:

oJ s

ofTg ¼
o

ofTg
XE

e¼1

J e
s ¼

XE

e¼1

oJ e
s

ofTg ¼ 0:

We can determine the steel layer single element matrix
[Ce]s, [Me]s, and {fe}s as follows:

½De�s ¼ ½rke
s �; ð16Þ

½Ce�s ¼
Z

V
rqsCs½Ne�fTg½Ne� ofT g

ot
dV

¼ 2pqsCs

60l2

ð2R5
j � 20R2

j R3
i þ 30RjR4

i � 12R5
i Þ

ð3R5
j � 5R4

j Ri þ 5RjR4
i � 3R5

i Þ

"
ð3R5

j � 5R4
j Ri þ 5RjR4

i � 3R5
i Þ

ð12R5
j � 30R4

j Ri þ 20R3
j R2

i � 2R5
i Þ

#
;

ð17Þ

½Me�1s ¼
Z

V
½Be�T½De�s½Be�dV

¼ 2pks

l2

Z Rj

Ri

�1

1

� 	
�1 1½ �r2 dr

¼
2pksðR3

j � R3
i Þ

3ðRj � RiÞ2
1 �1

�1 1

� 	
: ð18Þ

At the right node (Ni = 0, Nj = 1, r = Rj)

½Me�2s ¼
Z

Se
2

hfNegTfNegdS

¼
Z

Se
2

h
NiN i N jN i

NiNj NjNj

� 	
dSS

¼ 2pRoh
0 0

0 1

� 	
:

Merging the ms in ½Me�1s for element 1,2, . . . ,n. and ½Me�2s
into the global conductance matrix, [M]s:

½M �s

¼

m1 �m1 0 0 0 0

�m1 m1þm2 �m2 0 0 0

0 �m2 m2þm3 �m3 0 0

0 0 �m3 m3þm4 � � � � � �

� � � � � � � � � � � � . .
.

�mn

0 0 0 0 �mn mnþ 2pRoh

26666666664

37777777775
;

ð19Þ

ff egc ¼
Z

Se
1

hT1fNegT dS ¼
Z

Se
1

hT1
0

1

� 	
dS

¼ 2pRo � hT1
0

1

� 	
: ð20Þ

Assembling the chrome layer and the steel layer, and min-
imizing it with respect to the set of nodal values, {T}:
oJ
ofTg ¼

o

ofT g
XE

e¼1

J e ¼
XE

e¼1

oJ e

ofTg ¼ 0: ð21Þ

Eq. (21) is the first-order linear differential equation of the
system:

½C� ofTg
ot
þ ½M �fTg þ fF g ¼ 0; ð22Þ

[C] matrix is the capacitance matrix. [M] is the conductance
matrix. {F} is the thermal load vector. According to Eq.
(22), by taking the process noise inputs [23] into account,
the continuous-time state equation can be obtained as
follows:

_TðtÞ ¼ WTðtÞ þ X½qðtÞ þ wðtÞ�; ð23Þ
W ¼ ð�1Þ½C��1½M �;
X ¼ ð�1Þ½C��1fff g:

The state vector T(t) is N � 1. N is the total number of
nodes. W and X are the coefficient matrices. W is N � N.
X is N � 1. q(t) is the unknown heat flux input on the
boundary. x(t) is the process noise. This noise term repre-
sents the modeling error. The state equation can be sam-
pled with the time interval, Dt:

X ðkÞ ¼ UX ðk � 1Þ þ C½qðk � 1Þ þ xðk � 1Þ�; ð24Þ

where

X ðk � 1Þ ¼ T 1 T 2 T 3 � � � T N�1 T N½ �T;
U ¼ eWDt;

C ¼
Z ðkþ1ÞDt

kDt
expfW½ðk þ 1ÞDt � t�gXdt;

X represents the state vector. U is the state transition ma-
trix. C is the input matrix. q is the input sequence. x is
the process noise vector, which is assumed to be white noise
with zero mean. The variance is as following:

EfxðkÞxTðjÞg ¼ Qdkj; ð25Þ

where dkj is a Dirac delta function. In order to compare the
results for situations involving measurement errors, Eq. (8)
is adopted. The discrete-time measurement equation
becomes

ZðkÞ ¼ HX ðkÞ þ mðkÞ; ð26Þ

Z is the observation vector at time kDs. H is the measure-
ment matrix. v is the measurement noise vector, which is
assumed to be white. The variance of v(k) is given by
E{m(k)mT(j)} = Rdkj.

The conventional input estimation approach has two
parts: one is the Kalman filter without the input term,
and the other is the weighted recursive least square estima-
tor. The detailed formulation of this technique can also be
found in Tuan et al. [14].

The equations of the Kalman filter are as follows:
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X ðk=k � 1Þ ¼ UX ðk � 1=k � 1Þ; ð27Þ
P ðk=k � 1Þ ¼ UP ðk � 1=k � 1ÞUT þ CQCT; ð28Þ
sðkÞ ¼ HPðk=k � 1ÞHT þ R; ð29Þ
KðkÞ ¼ P ðk=k � 1ÞH Ts�1ðkÞ; ð30Þ
P ðk=kÞ ¼ ½I � KðkÞH �Pðk=k � 1Þ; ð31Þ
ZðkÞ ¼ ZðkÞ � HX ðk=k � 1Þ; ð32Þ
X ðk=kÞ ¼ X ðk=k � 1Þ þ KðkÞZðkÞ: ð33Þ

The equations of the recursive least squares estimator are
as follows:

BðkÞ ¼ H ½UMðk � 1Þ þ I �C; ð34Þ
MðkÞ ¼ ½I � KðkÞH �½UMðk � 1Þ þ I �; ð35Þ
KbðkÞ ¼ c�1P bðk � 1ÞBTðkÞ

� ½BðkÞc�1P bðk � 1ÞBTðkÞ þ sðkÞ��1
; ð36Þ

P bðkÞ ¼ ½I � KbðkÞBðkÞ�c�1P bðk � 1Þ; ð37Þ
q̂ðkÞ ¼ q̂ðk � 1Þ þ KbðkÞ½ZðkÞ � BðkÞq̂ðk � 1Þ�: ð38Þ

q̂ðkÞ is the estimated input vector. Pb(k) is the error covari-
ance of the estimated input vector. B(k) and M(k) are the
sensitivity matrices. Kb(k) is the correction gain. ZðkÞ is
the bias innovation produced by the measurement noise
and input disturbance. s(k) is the covariance of the resid-
ual. c is the weighting constant or weighting factor.

3. The intelligent fuzzy weighted RLSE input estimation

approach

In this section, the intelligent fuzzy weighting factor is
constructed. It can be operated at each step based on the
innovation from the Kalman filter. The thermal unknown
is assumed to be constant with the value of qk�1 over the
time steps, k = 0,1, . . . ,n,n + 1, . . . ,n + l, . . . as follows:

qðk � 1Þ ¼
0; k � 1 < n;

qk�1; n < k � 1 < nþ l:

�
ð39Þ

Although qk�1 is unknown, the important recursive rela-
tion has already been derived as follows [14]:

ZðkÞ ¼
bZðkÞ; k � 1 6 n;bZðkÞ þ BðkÞqk�1; n < k � 1 6 nþ l;

(
ð40Þ

where bZðkÞ ¼ ZðkÞ � H bX ðk=k � 1Þ denotes the bias-free
innovations caused by the measurement noise. The noises,bZð1Þ to bZðkÞ, are assumed to be independent and to have
the same distribution, that is to say, they are Gaussian
white noises with zero means.

ZðkÞ ¼ ZðkÞ � HX ðk=k � 1Þ is the bias innovation
caused by measurement noise and input bias. According
to Eq. (40), ZðkÞ is white or normally distributed when
there is no input. Note that the unknown input qk�1 can
generally be arbitrary (deterministic or random). When
qk�1 starts to act on the system, ZðkÞ can be assumed to
be abnormally or long-tail distributed if the input is consid-
ered to have a large deviation.
In the equations of the recursive least square estimator,
q̂ðkÞ is the estimate of the unknown input. Pb(k) is the error
covariance of the input estimation process. Kb(k) is the cor-
rection gain. c(k) is the weighting factor in the range
between 0 and 1. The two functions of c(k) are smoothing
and forgetting. The forgetting effectiveness depends on the
value of c(k). Kb(k) gets larger as c(k) gets smaller accord-
ing to Eq. (36). The forgetting effect becomes more conspic-
uous according to Eq. (37). Note that the faster the
forgetting effect is, the lower the smoothing effect will be,
that is, it introduces oscillation. The weighting factor c(k)
is employed to compromise between the upgrade of track-
ing capability and the loss of estimation precision. The
relation has already been derived as follows [14]:

cðkÞ ¼
1; jZðkÞj 6 r;

r
jZðkÞj ; jZðkÞj > r:

(
ð41Þ

The weighting factor, c(k), as shown in Eq. (41) is adjusted
according to the measurement noise and input bias. In the
industrial applications, the standard deviation r is set as a
constant value. The magnitude of weighting factor is deter-
mined according to the modulus of bias innovation, jZðkÞj.
The unknown input prompt variation will cause the large
modulus of bias innovation. In the meantime, the smaller
weighting factor is obtained when the modulus of bias
innovation is larger. Therefore, the estimator accelerates
the tracking speed and produces larger vibration in the esti-
mation process. On the contrary, the smaller variation of
unknown input causes the smaller modulus of bias innova-
tion. In the meantime, the larger weighting factor is ob-
tained according to the small modulus of bias innovation.
The estimator is unable to estimate the unknown input
effectively. For this reason, the intelligent fuzzy weighting
factor for the inverse estimation method which efficiently
and robustly estimates the time-varying unknown input
will be constructed in this research.

The basic configuration of the fuzzy logic system consid-
ered in this paper is illustrated here. The fuzzy logic system
includes four basic components: the fuzzy rule base, fuzzy
inference engine, fuzzier, and defuzzier. The range of fuzzy
logic system input, h(k), may be chosen in the interval, [0, 1]:

hðkÞ ¼ jDZðkÞjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DZ2ðkÞ þ Dt2

p ; ð42Þ

where DZðkÞ ¼ ZðkÞ � Zðk � 1Þ denotes the variations of
the bias innovation. Dt is the sampling interval. The pro-
posed intelligent fuzzy weighting factor uses the input var-
iable h(k) to self-adjust the factor c(k) of the recursive least
squares estimator. Therefore, the fuzzy logic system con-
sists of one input and one output variables. The range of
input, h(k), may be chosen in the interval, [0, 1], and the
range of output, c(k), may also be in the interval, [0, 1].
The fuzzy sets for h(k) and c (k) are labeled in the linguistic
terms of EP (extremely large positive), VP (very large posi-
tive), LP (large positive), MP (medium positive), SP (small
positive), VS (very small positive), and ZE (zero). The spe-



Fig. 2. Membership functions for the fuzzy sets for h(k) and c(k) [27].
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cific membership is defined by using Gaussian functions
shown in Fig. 2.
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A fuzzy rule base is a collection of fuzzy IF–THEN rules
[27]:

IF h(k) is zero (ZE) THEN c(k) is extremely large posi-
tive (EP),
IF h(k) is very small positive (VS) THEN c(k) is very
large positive (VP),
IF h(k) is small positive (SP) THEN c(k) is large positive
(LP),
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(SP),
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IF h(k) is extremely large positive (EP) THEN c(k) is
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where h(k) 2 U and c(k) 2 V � R are the input and output
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The fuzzier maps a crisp point h(k) 2 U into a fuzzy set
A in U. Therefore, the nonsingleton fuzzier can be
expressed in [24]:

lAðhðkÞÞ ¼ exp �ðhðkÞ � �xl
iÞ

2

2ðrl
iÞ

2

 !
; ð43Þ

lA(h(k)) decreases from 1 as h(k) moves away from �xl
i . ðrl

iÞ
2

is a parameter characterizing the shape of lA(h(k)).
The fuzzy inference engine performs mapping from

fuzzy sets in U to B in R based on the fuzzy IF–THEN
rules and the compositional rule of inference. The Mamda-
ni maximum–minimum inference engine was used in this
paper. The max–min-operation rule of fuzzy implication
is shown in [24]:

lBðcðkÞÞ ¼ max
c

j¼1
min

d

i¼1
½lAj

i
ðhðkÞÞ;lAj

i!BjðhðkÞ; cðkÞÞ�
� �

; ð44Þ

where c is the fuzzy rule, and d is the dimension of input
variables.

The defuzzier maps a fuzzy set B in V to a crisp point
c 2 V. The fuzzy logic system with the center of gravity is
defined in [24]:

c�ðkÞ ¼
Pn

l¼1�y
llBðclðkÞÞPn

l¼1lBðclðkÞÞ ; ð45Þ

n is the number of outputs. �yl is the value of the lth output.
lB(cl(k)) represents the membership of cl(k) in the fuzzy set
B. Using c*(k) in Eq. (45) to replace in Eqs. (36) and (37)
allows us to configure an adaptive fuzzy weighting function
of the recursive least square estimator (RLSE). A flow
chart of the computation for the application of the recur-
sive input estimation algorithm is given in Fig. 3.

4. Results and discussion

To verify the performance of the proposed method, a
thermal fluid flowing into the hollow cylinder pipe is mod-
eled. The heat flux on the inner wall is estimated inversely
by measuring the temperature on the outer wall. The ther-
mal and mechanical properties of the hollow cylinder pipe
steel (AISI 4340) and its associated chrome layer are shown
as Table 1 [21]. The inner and outer diameters of the dou-
ble-layer hollow cylinder pipe are Ri = 0.020 m, and
Ro = 0.025 m. The thickness of chrome is 0.5 mm.

Two typical heat flux inputs are considered in the pro-
posed approach. A thermocouple was placed at x = Ro

on the outer wall. The convection heat transfer coefficient
Table 1
Thermal and mechanical properties of materials

Chrome Steel (AISI 4340)

Specific heat Cc = 505.03 J/(kg K) Cs = 469.05 J/(kg K)
Density qc = 7191 kg/m3 qs = 7827 kg/m3

Thermal conductivity kc = 83.75 J/(m s K) ks = 38.07 J/(m s K)
Thermal diffusivity ac = 2.305 � 10�5 m2/s as = 1.037 � 10�5 m2/s
Melting temperature (Tm)c = 2130 K (Tm)s = 1777 K
is not a property of the fluid. It is an experimentally deter-
mined parameter whose value depends on all the variables
influencing convection, such as the surface geometry, the
nature of fluid motion, the properties of the fluid, and
the bulk fluid velocity. Several typical values of are given
in Tables 1–5 of [25]. Tables 1–5 show that the free convec-
tion heat transfer coefficient of air. Therefore, the free con-
vection heat transfer coefficient of air, is set as the
simulation condition. In general, the free convection heat
transfer coefficient is assumed according to the real exper-
iment situation. Different total time periods, tf = 8 s and
12 s; the sampling interval, Dt = 0.01 s; the number of ele-
ments, E = 10; the process noise covariance matrix,
Q = 104; the measurement noise covariance matrix,
R = r2 = 10�8, where r is the standard deviation of the
noise. The initial conditions for the input estimator are
given as follows:

X ð�1=� 1Þ ¼ 0 0 � � � 0½ �T and P ð�1=� 1Þ ¼ diag½108�:

For the Kalman filter:
q(�1) = 0, and Pb(�1) = 108. M(�1) is set as a zero

matrix for the real-time least square estimator. Since
P(�1/�1) and Pb (�1) are normally unknown, P(�1/�1)
and Pb(�1) of the estimator can be initialized as large num-
bers. This has the effect of treating the initial errors as large
numbers, so that the estimator usually ignores the first few
estimates. The measurement of the unknown input heat
flux, q(t), on the inner wall surface is simulated by adding
the measurement error to the actual temperature, which
is solved directly from the heat conduction equation:

Zðt; rÞ ¼ T ðt; rÞ þ xr; ð46Þ
where x is a random variable in the range that
�2.576 6 x 6 2.576. Two test input heat fluxes are chosen
as the transient and continuous square waveforms.

Example 1. Transient square waveform for q(t) (W/m2).

The input heat flux is modeled by a transient square
waveform which flows into the hollow cylinder pipe. The
transient square waveform denotes three rounds in one
shot. q(t) is shown as the following:

qðtÞ ¼ 7� 105; 3 6 t 6 3:25

0; otherwise:

(
ð47Þ

The thermocouple is located on the outer wall of the hol-
low cylinder pipe. The process noise covariance matrix,
Q = 104, and the measurement noise covariance matrix,
R = r2 = 10�8. The estimates of q(t) using the intelligent
fuzzy weighting function, the adaptive weighting function,
and the constant weighting factor, c = 0.95, are plotted in
Fig. 4. The estimation results show that the estimators with
the intelligent fuzzy weighting function and the constant
weighting factor have quicker convergence performance
than that with the adaptive weighting function. A great
quantity of unknown heat flux input is applied on the inner
wall of the hollow cylinder pipe. The adaptive weighted



Fig. 4. Comparison of the inverse estimation using different weighting
functions when the input is a single square heat flux wave (Q = 104,
R = 10�8).
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estimator has great tracking performance, but it is not suit-
able in reducing the effect of the measurement noise. On the
contrary, the constant weighted estimator has good perfor-
mance in reducing the effect of the measurement noise, but
it produces estimates with lower precision. The simulation
results demonstrate that the proposed estimation method
has great performance in convergence in the initial stage
and in reducing the effect of measurement noise.

Fig. 5 shows that the estimator is influenced by the cor-
rection gain, Kb, in the estimation process. The largest cor-
rection gain is adopted by the adaptive weighting function
of the estimator. The second is adopted by intelligent fuzzy
weighting function and the smallest is adopted by the con-
stant weighting factor. The adaptive weighted estimator
uses the larger correction gain to maintain the tracking
capability for a great quantity of unknown input. However,
Fig. 5. Comparison of the correction gain using different weighting
functions when the input is a single square heat flux wave (Q = 104,
R = 10�8).
the capability in reducing the influence of measurement
noise is not quite efficient. On the contrary, the constant
weighted estimator has the opposite effect. The intelligent
fuzzy weighted estimator is using a reasonable correction
gain to obtain rapider convergence in the initial response
stage and higher tracking performance, and to reduce the
influence of measurement noise. This work presents a
robust forgetting zone, capable of providing a reasonable
trade-off between the tacking capability and the flexibility
against noises to maintain the effectiveness of estimation
process.

Fig. 6 shows that the estimator would be influenced by
the error covariance, Pb in the estimation process. The larg-
est error covariance is adopted by the adaptive weighting
function of the estimator. The second is adopted by the
intelligent fuzzy weighting function and the smallest is
adopted by the constant weighting factor. The adaptive
weighted estimator uses the larger error covariance to
maintain the tracking capability for a great quantity of
unknown input. However, the capability in reducing the
influence of measurement noise is not quite efficient. On
the contrary, the constant weighting estimator has the
opposite effect. According to the effects mentioned above,
the error covariance and the correction gain have the same
effects to the estimator.

According to Fig. 7 and Eqs. (36)–(38), q̂ðkÞ is the esti-
mate of the unknown input. Pb(k) is the error covariance of
the input estimation process. Kb(k) is the correction gain.
c(k) is the weighting factor in the range between 0 and 1.
The two functions of c(k) are smoothing and forgetting.
The effectiveness of forgetting depends on the value of
c(k). Kb(k) gets larger as c(k) gets smaller according to
Eq. (36). In the meantime, the effect of forgetting becomes
more conspicuous according to Eq. (37). Note that the fas-
ter the effect of forgetting is, the lower that of smoothing
will be due to the oscillation. The intelligent fuzzy weight-
Fig. 6. Comparison of the input error covariance using different weighting
functions when the input is a single square heat flux wave (Q = 104,
R = 10�8).
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ing factor, c(k), is employed to compromise between the
upgrade of tracking capability and the loss of estimation
precision.
Fig. 7. Comparison of different weighting functions (Q = 104, R = 10�8).

Fig. 8. Effects of various process noise variances ((a) Q = 1, (b) Q = 102, (c)
functions (R = 10�8).
The case has been compared by using the measurement
noise covariance matrix, R = r2 = 10�8 and different pro-
cess noise variance, such as Q = 1, 102, 104 and 106 as
shown in Fig. 8. It shows that when the process noise var-
iance Q increases, it will influence the estimation resolu-
tion. A larger process noise variance will affect the
capability of tracking the unknown time-varying heat flux
input. As shown in Fig. 8c, the intelligent fuzzy weighted
estimator has good performance of estimating the
unknown time-varying heat flux in the situation that the
variation exits. As shown in Fig. 8d, the adaptive weighted
estimator have good tracking performance with the process
noise variance, Q = 106. Nevertheless, it produces over-
shoot in the estimation process.

Fig. 9 shows the estimation results with the process
noise variance fixed (Q = 104), and different measurement
error variances (R = r2 = 10�4, 10�6, 10�8 and 10�10) from
t = 0 s to t = 8 s. The result shows that when R is small, the
performance of the filter will be better in filtering out the
noise. On the contrary, there will be severer fluctuation
Q = 104 and (d) Q = 106) in the input estimation with different weighting
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when R increases. In other words, when the measurement
variance R increases, the Kalman gain K(k) in Eq. (30) will
decrease. The reason is that the corrector uses the new mea-
surement available at kth time step. The correction in Eq.
(31) increases, and the Kalman gain K(k) decreases. This
makes the estimate closer to the predicted value than the
new measurement. According to Fig. 9c, the intelligent
fuzzy weighted estimator has great performance in estimat-
ing the unknown time-varying heat flux when rapid varia-
tion exists. According to Fig. 9d, the adaptive weighted
estimator have great tracking performance with the mea-
surement noise variance, R = 10�10. The smaller measure-
ment noise variance means that a more precise sensor is
in use. However, it is costly to use such an instrument.
Besides, it still produces overshoot in the estimation pro-
cess. On the other hand, the larger measurement error
can cause estimation lag and precision degradation. In this
research, the temperature measurements on the outer wall
are utilized to recursively estimate the temperature on the
inner wall. The estimated temperatures on the inner wall
Fig. 9. Effect of various measurement noise covariances ((a) R = 10�4, (b) R =
weighting functions (Q = 104).
can be proven precise by using the backward difference
method shown in Fig. 10. The estimated temperature is
delayed due to the heat transfer properties. The estimated
temperature field distribution is shown in Fig. 11. The
influences produced by using different sampling time on
estimation results are shown in Fig. 12. The four sets of
chosen sampling time,, is 0.1, 0.01, 0.001, and 0.0001 s.
The root mean square error of input estimation with differ-
ent weighting functions and sampling time are shown in
Fig. 13. The root mean square error (RMSE) for the esti-
mated heat flux is defined as the following [15]:

RMSE ¼ 1

D

XD

k¼1

ðqk � q̂kÞ2
" #1

2

; ð48Þ

where D is the total number of time steps. Figs. 12 and 13
show that the better estimation results can be obtained
when adopting the smaller sampling time. When the sam-
pling time is 0.01 s, using the constant weighting factor will
obtain an estimation result with lower performance. The
10�6, (c) R = 10�8 and (d) R = 10�10) in the input estimation with different



Fig. 10. Comparison of the backward difference method result and
estimates on the inner wall and the measurements on the outer wall.

Fig. 11. Temperature estimates in the radial direction.
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fuzzy weighted estimator is relatively better. When the
sampling time is smaller than 0.01, the estimation result
Fig. 12. Effect of various sampling time ((a) Dt = 10�1, (b) Dt = 10�2, (c) Dt =
on the input estimation results.
is more precise. However, to take the reaction time of mea-
suring equipments and the computing time of computers
into account, the sampling time is set as 0.01 to obtain
an acceptable estimation result.
10�3 and (d) Dt = 10�4) and weighting functions (Q = 104, and R = 10�8)
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Example 2. Continuous square waveform for q(t) (W/m2).

The input heat flux is modeled by a continuous square
waveform flowing into the hollow cylinder pipe. The con-
tinuous square waveform denotes three rounds in the con-
tinuous shots. q(t) is assumed in the form as the following:

qðtÞ ¼
7� 105; 1 6 t 6 1:5; 2 6 t 6 2:5; 3 6 t 6 3:5;

4 6 t 6 4:5; 5 6 t 6 5:5; 6 6 t 6 6:5;

0; others:

8><>:
ð49Þ

The thermocouple is located on the outer wall of the hol-
low cylinder pipe. The process noise covariance matrix,
Q = 104. The measurement noise covariance matrix,
R = r2 = 10�8. The estimation results of q(t) using the
intelligent fuzzy weighting function, the adaptive weighting
function, and the constant weighting factor, c = 0.95, are
Fig. 13. The root mean square errors of input estimation using different
weighting functions and various sampling time (Q = 104, and R = 10�8).

Fig. 14. Comparison of the inverse estimation using different weighting
functions when the input is a consecutive square heat flux wave (Q = 104,
R = 10�8).
plotted in Fig. 14. The estimation results show that the bet-
ter convergence is performed by the intelligent fuzzy
weighted estimator and the constant weighted estimator
rather than the adaptive weighted estimator in the initial
stage. The adaptive weighted estimator performs great
tracking capability, but it is not capable of reducing the ef-
fect due to the measurement noise. On the contrary, the
constant weighted estimator has the opposite effect. By
using this method, the temperature measurement on the
outer wall is adopted to recursively estimate the tempera-
ture on the inner wall. The estimated temperatures at the
inner wall were validated by the backward difference meth-
od shown in Fig. 15. The estimated temperature is delayed
because of the heat transfer properties. The estimated tem-
perature field distribution is shown in Fig. 16. The simula-
tion results demonstrate that the proposed method
performs great convergence in the initial stage. It is an effi-
cient method in tracking the unknown input and reducing
the influence due to the measurement noise.
Fig. 15. Comparison of the backward difference method result and
estimates on the inner wall and the measurements on the outer wall.

Fig. 16. Temperature estimates in the radial direction.
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Example 3. The different levels input heat flux applied on
the inner wall in the axial direction [26].
Fig. 17. Comparison of the inverse estimation using the intelligent fuzzy weigh
and (e)) [26].
In this example, an inverse method based on the intelli-
gent fuzzy weighted input estimation method including the
ting function ((b), (d), and (f)) and the constant weighting factor ((a), (c),
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finite-element scheme to inverse estimate the unknown heat
flux of the 2D gun barrel IHCP is presented. By using the
7.62 mm gun barrel outer wall temperature measurement
data, the on-line accuracy is further utilized to inversely
estimate the unknown heat flux of the chamber. The simu-
lated uniform and non-uniform heat flux cases are applied
to the inner wall of a gun barrel with free convection situ-
ation on the outer surface. varies with time and the location
on the axis. The relation has already been deliberately
derived as follows [26]. In this example, fifteen different
input heat flux cases are modeled by using the Weibull dis-
tribution form. The unknown input heat flux is assumed as
the following:

qiðz; tÞ ¼

0; 0 6 t < 2;

2� 108 � e�zi � b
a

t�2
a

� �b�1 � e�
t�2

að Þb ; 2 6 t 6 tf ;

a ¼ 4:8; b ¼ 1:8; i ¼ 1; 2; 3; . . . ; 14; 15;

zi ¼ 1þ 0:2� ði� 1Þ; i ¼ 1; 2; 3; . . . ; 14; 15:

8>>>><>>>>:
ð50Þ

In this case, 15 different input heat flux cases decreases
with the exponent form in different positions. The sensors
Fig. 18. 3D heat flux (x,y,q) for Example 3.

Fig. 19. 3D temperature (z, t,T) on the inner wall for Example 3.
are located at r = Ro, node 12,24,36, . . . , 156,168,180. We
assume that the measurement noise covariance matrix,
R = r2 = 10�8, process noise variance and the sampling
time interval Dt = 0.01 s. The estimation results q(t) of
using the intelligent fuzzy weighting function are plotted
in Figs. 17b, d, and f, and the constant weighting factor,
c = 0.8995, are plotted in Figs. 17a, c, and e. The simula-
tion results demonstrate that the proposed method
performs efficiently in tracking the unknown input. In
this case, the 3D heat flux (z, t,q) and inner wall tempera-
ture (z, t,q) are plotted in Figs. 18, 19. The simulation re-
sults demonstrate that this method applying the
measured temperature on 2D gun barrel outer surface
can precisely estimate the unknown time-varying heat flux
and the temperature field distribution in the chamber in
real-time.

5. Conclusions

A novel intelligent fuzzy weighted on-line input estima-
tion method is developed for the estimation of the
unknown time-varying heat flux input with the unpredicted
modeling and measurement errors. The proposed intelli-
gent fuzzy weighted estimator is based on the fuzzy logic
system to infer the weighting factor. The simulation results
show that the proposed method is an efficient adaptive and
robust inverse estimation method. Moreover, comparing
the constant weighted estimator with the adaptive weighted
estimator, the superior estimation capability of the pro-
posed method is verified. Future work will combine the
proposed method with Extended Kalman Filter (EKF)
for the nonlinear inverse heat conduction problem.
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